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Spectral models for turbulent pressure fluctuations are developed by directly Fourier 
transforming the integral solution to the Poisson equation for a homogeneous 
constant-mean-shear flow. The turbulence-turbulence interaction is seen to possess 
the well-known k-3 inertial subrange and to dominate the high-wavenumber region. 
The turbulence-mean-shear contribution is seen to be dominant in the energy- 
containing range and falls off as k?? in the inertial subrange. The subrange constants 
and the mean-square pressure fluctuation are evaluated using a spectral model for 
the velocity. A spectral analysis of the velocity contamination of a pressure probe 
is also presented. Results are compared with spectral measurements with a static- 
pressure probe in the mixing layer of an axisymmetric jet. 

PART 1. THEORETICAL DEVELOPMENT 
1. Introduction 

The problem of pressure fluctuations in a turbulent flow has been the subject of 
numerous investigations over the past fifty years. Taylor (1935,1936) used dimensional 
and physical arguments to estimate the mean-square fluctuating pressure gradient 
in an isotropic turbulent flow. Heisenberg (1948) used the Millionshchikev hypothesis 
(fourth moments are related to  second moments as though they were normally 
distributed random variables) to obtain an integral expression for the fluctuating 
pressure gradient in isotropic turbulence which depended on the velocity spectrum 
function E ( k ) .  Similar approaches were taken by Chandrasekhar (1949), who improved 
Heisenberg’s calculation, by Batchelor (1951), who obtained a similar integral for the 
mean-square fluctuating pressure as well as one involving the velocity correlations, 
and by Obukhov (1949) and Yaglom (1949), who calculated the structure function for 
the fluctuating pressure. From this work it was deduced that in isotropic flow the maxi- 
mum contribution to  the mean-square pressure fluctuation was from wavenumbers 
near the maximum of E(k)  ; that is, from wavenumbers in the energy-containing 
range. The primary contributions to the pressure-gradient fluctuations came from 
neither the energy-containing range nor from the dissipative range, but from an 
intermediate range of wavenumbers where kE(k)  is a maximum. 

Other attempts to estimate the mean-square pressure fluctuation from the 
formulation in terms of the velocity correlations were made by Uberoi (1953), 
Kraichnan (1956) and Hinze (1959). Uberoi used measured second-order velocity 
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correlations in isotropic flow as did Batchelor, but with more extensive data. Uberoi 
also showed the validity of the Millionshchikov hypothesis for his data. Kraichnan 
and Hinze used Gaussian and simple exponential decay functions to represent the 
velocity correlation empirically. The result of the latter, BLL(y) z exp ( - lrl/Z), 
yielded z 0 . 5 p 2 ( 2 ) 2 ,  which was nearly equal to that deduced by Uberoi from 
experimental velocity data. Other contributors to the understanding of pressure 
fluctuations in isotropic turbulent flow included Obukhov & Yaglom (1951) and 
Golitzin (1963). A detailed discussion of these contributions is contained in Monin 
& Yaglom (1975). Kraichnan (1956) also attempted to assess the effect of anisotropy 
on the mean-sqaure pressure fluctuations, and was able to show that a reduction could 
be expected. 

There were no attempts reported to calculate a spectrum for the pressure 
fluctuations, perhaps because of difficulties in integrating the difficult integral 
expressions. Inoue (1951) and Batchelor (1953) did note on dimensional grounds that 
the spectrum of the pressure fluctuations in the inertial subrange was given by 
m ( k ) / p 2  cc & k d ,  where c is the rate of dissipation of energy per unit mass and m(k)  
is the pressure-spectrum function. 

Attempts to  address the difficult problem of pressure fluctuations in free turbulent 
shear flows appear to be limited to the efforts of Kraichnan (1956) and Lilley (1956). 
By decomposing the velocity field into mean and fluctuating parts and ignoring 
third-order velocity moments, they were able to identify two source terms: a 
turbulence-mean-shear contribution and a turbulence-turbulence contribution. The 
latter contribution (with the assumption of isotropy) was identical with that 
discussed above, while the former was integrated by assuming a uniform mean shear 
and homogeneous turbulent field. Kraichnan, using an  isotropic model, calculated 
the contribution to the mean-square pressure fluctuation from the mean-shear term 
as 

where 1 was the integral scale for the assumed exponentially decaying velocity 
correlation. Anisotropy was again shown to reduce the coefficient. 

Except for the work of Jones et al. (1979) and our own (George 1974; George & 
Beuther 1977; George, Beuther & Arndt 1980; Beuther, George & Arndt 1977a,b), 
there appears to have been no effort to calculate the form of the pressure spectrum 
in a turbulent shear flow. This paper attempts to redress this neglect by calculating 
explicit, forms for the various contributions to the pressure spectrum in the inertial 
subrange in a free shear flow. The results are believed to be applicable a t  an 
intermediate range of wavenumbers in a variety of turbulent shear flows and provide 
a basis for evaluation of recent attempts to measure pressure spectra in such flows. 

I n  §§2-11 the spectral solution to the Poisson equation for the pressure will be 
derived and decomposed into terms directly dependent on the mean shear and terms 
depending only on fluctuating quantities. The wavenumber dependence of these terms 
will be deduced from dimensional considerations, and explicit values for the 
coefficients will be calculated from an assumed model for the velocity spectrum. 
Finally the mean-square fluctuating pressure and pressure gradient will be evaluated 
and compared with the previously cited results. A comparison of experimental data 
with the theory presented here, and the evaluation of the experimental techniques 
is presented in Part  2 ($9 12-19). 
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2. The Poisson equation for the pressure, and its solution for turbulent free 
shear flows 

It is well known that the governing equation for the static pressure field in an 
incompressible fluid can be derived from the momentum and mass-conservation 
equations as 

where V2 is the Laplacian operator, j3 represents the instantaneous static pressure, 
p is the density and iii is the instantaneous velocity vector. This equation can be 
integrated for a variety of situations using the appropriate Green functions. 

If we confine our attention to  free shear flows (no boundaries) the surface-integral 
term vanishes and we can write 

where, unless otherwise denoted, j refers to a volume integral over all space. 
Decomposing the velocity and pressure fields into mean and fluctuating parts, we can 
write for the fluctuating static pressure (cf. Townsend 1976) 

where lower-case letters are used to indicate fluctuating values and capitals to 
indicate mean quantities. It is clear that  there are two different mechanisms for 
generating turbulent pressure fluctuations : an interaction of the turbulence with the 
mean shear and an interaction of the turbulence with itself. 

We define the cross-correlation of the pressure fluctuations at two points in space 
as 

(2.4) 

Using primed values to  indicate that the variable is to be evaluated a t  position y’, 
i t  is straightforward to show that 

q, p ( x ,  x’) = P(X)P(X’). 

Equation (2 .5)  illustrates that there are two types of turbulence-mean-shear 
interactions that must be considered : those resulting from second-moment terms and 
those resulting from third-moment terms. 

6-2 
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3. The pressure covariance for a constant-mean-shear, homogeneous 
turbulent flow 

constant; that is, 

We further assume that the turbulence is homogeneous and define? 

We now restrict ourselves to a unidirectional flow in which the mean shear is 

13.1) U, = Ky, ail. 

it is straightforward to show that 

(3.6) 

4. The spectrum of the static pressure fluctuations 

as the three-dimensional Fourier transforms of the cross-correlations as follows : 
We can define the cross-spectral densities of the pressure and velocity moments 

(4.3) 

By taking the transform of (3.6) and using (4.1)-(4.4), we can obtain the turbulence 
pressure spectrum as 
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where * denotes the complex conjugate, and we have defined 

W(k) is a wavenumber filter which weights the contributions of the different velocity 
Fourier components to the pressure spectrum. It is shown in the Appendix that 

(4xl2 W(k) = - k4 ' (4.7) 

where k = Ikl. The rapid roll-off with increasing wavenumber shows that the pressure 
spectrum will be dominated by the larger turbulence scales. 

Using this result, (4.5) can be rewritten as 

1 
- F  p2 P,P (k) = 4K2 

(2nd-moment turbulence-shear interaction) 

(3rd-moment turbulence-shear interaction) 

(turbulence-turbulence interaction). (4.8) 

The last term, which represents the turbulence-turbulence interaction spectrum, is 
not new and has previously been given by Batchelor (1951) (for an excellent summary 
see Monin & Yaglom 1975). The second term involving the third-moment interaction 
with the mean shear can be shown to be exactly zero for an isotropic turbulent flow. 
Therefore, because of the local isotropy at high wavenumbers, one might expect it 
to be significant only a t  low wavenumbers in high-Reynolds-number flows. Since the 
second-moment interaction with the mean shear is directly dependent on the 
turbulent energy and the Reynolds stress, it  is likely that this term will never be 
negligible in a turbulent shear flow. The integral of this term was the only 
shear-interaction term considered by Kraichnan (1956) in his analysis of the 
mean-square pressure fluctuations. 

5. The inertial subrange: dimensional and physical analysis 
To proceed analytically beyond (4.8) without making rather restrictive assumptions 

about the flow (e.g. isotropy) appears to be impossible in view of the lack of 
information about the velocity moments. Therefore it is especially valuable to see 
if some general statements about the shape of the prcssure spectrum can be made 
on dimensional and physical grounds before continuing the analysis. 

It has long been established (Kolmogorov 1941) that a t  high Reynolds numbers 
a t  wavenumbers sufficiently larger than those that govern the primary decay 
processes and at which energy is added (usually, the energy-containing eddies) the 
turbulent-energy spectrum possesses a universal equilibrium range where the only 
governing parameters are e ,  the rate of dissipation of turbulent energy per unit mass, 
v, the kinematic viscosity, and k, the wavenumber. At an intermediate range of 
wavenumbers sufficiently removed from the effects of both viscosity and the large 
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scales, if the turbulent Reynolds number is sufficiently high, one finds an inertial 
subrange in which the only parameters are E and k. 

If we introduce the velocity spectrum function defined by 

where the integral is over spherical shells of radius k ,  then i t  is easy to  show from 
dimensional analysis that  in the inertial subrange 

E(k)  = adk-t ( k ,  -4 k 4 q-'), (5.2) 

where a is the Kolmogorov constant? and E is the rate of dissipation of turbulent 
energy per unit mass. k,  is a wavenumber characteristic of the energy-containing 
wavenumbers, and q is the Kolmogorov microscale, which characterizes the 
dissipative scales and is defined by 

q =  r3Y T .  
A spectrum function for the pressure can similarly be defined as 

(5.3) 

(5.4) 

It follows from (4.8) that  n(k) is composed of three parts, and can be written as 

where ns2 and ns3 represent the second-and third-moment turbulence-mean-shear 
interaction spectrum functions respectively, and nt represents the turbulence- 
turbulence interaction spectrum function. 

The inertial subrange form for each of these spectrum functions must be determined 
by only the parameters k, E and K.  Using the dependence on the mean shear given 
by (4.8), i t  follows immediately from dimensional analysis that  

1 
-nS2(k)  = a2K2dk-y, 
P2 
1 
-n (k) = a , K ~ k - ~ ,  
P2 s3 

1 
-n ( k )  = aPB k-5. 
P2 

(5.7) 

a2, a, and ap are universal constants analogous to the Kolmogorov constant for the 
velocity spectrum. 

Equation (5 .8)  for the turbulence-turbulence spectrum n( k) appears to  have first 
been suggested by Inoue (1951) and Batchelor (1953), although similar considerations 
for the pressure correlation function were given a t  slightly earlier dates by Heisenberg 
(1948) and Obukhov (1949). The forms for the shear-interaction spectra of (5.6) and 
(5.7) were first given by Beuther et al. (1977a,b) and by ?Jones et al. (1979). 

Similar dimensional considerations for the fourth-order velocity spectra also lead 
to  a -g law (cf. Dutton & Deaven 1972). However, Van Atta & Wyngaard (1975) 
have recently shown these arguments for higher-order spectra to be inconsistent with 
the experimental data, where a k-5 range is observed regardless of the order of the 

7 Throughout this paper we take a = 1.5 (see Tennekes & Lumley 1972). 



Pressure spectra in turbulent free shear flows 161 

velocity spectrum. They explained this discrepancy by arguing that the spectrum of 
un must depend on the dissipation of un, say en, as well as E and k .  Thus 

E,n(k) a en d k-4. 

This is similar to  arguments used by Corrsin (1951) to derive the inertial subrange 
of the spectrum of a passive scalar. 

Since the pressure spectrum (the turbulence-turbulence interaction spectrum, in 
particular) depends on the fourth-order velocity spectra, i t  is necessary to ask which 
of these alternatives, - 3  or -:, is appropriate. Later in this paper, we shall show 
that the k-; law is appropriate for the pressure spectrum of the turbulence-turbulence 
interactions, and is consistent with both the data and the arguments of Van Atta & 
Wyngaard. The physical reason for this is that there is no direct dissipation of 
pressure fluctuations. 

In  summary, we can state that the spectrum of the turbulent pressure fluctuations 
in the inertial subrange is the sum of three parts: a k-9 component from the 
second-momenkshear interaction, a kP3 component from the third-moment-shear 
interaction, and a k-3 component from the turbulence-turbulence interaction. Which 
of these dominates at any given wavenumber can be determined only if the mean- 
shear and turbulence quantities are given. However, it is clear that the turbulence- 
turbulence term will become relatively more important as we consider high 
wavenumbers. Moreover, it is important to note that all components of the pressure 
spectrum roll off faster than the k 3  of the velocity spectra. Hence contamination 
of a pressure-sensitive probe by velocity signals could dominate a t  high wavenumbers. 
This subject will be addressed later. 

6. The turbulence-mean-shear interaction pressure spectrum 

be written as 
From (4.8) the turbulence-mean-shear contribution to the pressure spectrum can 

k k k  
+ 2 i K ~ [ F ~ , , , ( k ) - - F , , , , ( k ) ] .  k4 (6.1) 

If we had general forms for the velocity spectra F2, and F2, ,,, we could immediately 
determine the pressure spectrum. Unfortunately, such forms are not available, and 
to proceed we must either use empirical equations or resort to assumptions of 
isotropy. 

It is straightforward to show that the assumption of isotropy implies that  the 
second term arising from third moments is identically zero. In  view of the local 
isotropy a t  high wavenumbers, we expect the neglect of this term to be acceptable 
in all turbulent shear flows a t  high turbulent Reynolds number, a t  least in that range 
of wavenumbers corresponding to the universal-equilibrium range. Hereinafter, we 
will consider only the first term in (6.1), which involves only second-moment 
turbulence quantities. 

For isotropic turbulent flow, agreat deal is known about E(k) ,  the three-dimensional 
velocity spectrum function defined by (5.1). From isotropy (see Batchelor 1953) the 
three-dimensional velocity spectrum is given by 
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Substituting this into (6.1) yields the turbulencemean-shear interaction pressure 
spectrum as 

The contribution to the pressure spectrum function from the turbulence-mean-shear 
interaction can be obtained from its defining integral as 

where dr(k) is an area element on a sphere of radius k = Ikl and the integration is 
over the entire sphere. Substituting (6.3) into (6.4), transforming to spherical 
coordinates, and carrying out the integration yields 

Although the spectrum function ns is useful for theoretical considerations, it is the 
one-dimensional spectrum defined by 

that is usually measured. 

mean-shear interaction to the one-dimensional pressure spectrum is given by 
It follows immediately from (6.3) and (6.6) that  the contribution of the turbulence- 

To calculate the spectrum function and the one-dimensional spectrum of the 
turbulencemean-shear pressure fluctuations from (6.5) and (6.7) we need to assume 
a form for E(k). It is well known that E(k)  has the following properties: 

Ckn (k small): 
E(k) = { a6 k-2 (inertial subrange) 

(cf. Monin & Yaglom 1975). The exponent n is 4 if the flow is assumed to be both 
homogeneous and incompressible. If the constraint of homogeneity is relaxed, a value 
of 2 is appropriate. It is clear from (6.8) that  the choice for n makes no difference 
a t  high wavenumbers. Thus, for isotropic flow, we choose the empirical spectrum 
suggested by von Karman (1948) as 

[ 1 + ( kh)2]y ’ 
E(k)  = ad A% 

where h is chosen so that E(k)  integrates to yield the turbulent kinetic energy per 
unit mass $u2. The velocity scale u is defined 

u2 = g[u; + u; + 241. (6.10) 

For isotropic flow the relation between E(k)  and the one-dimensional velocity 

_ _ -  

spectrum of the u1 component is 

(6.11) 
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Substituting (6.9) into (6.11) and carrying out the integration yields an q l ( k ) ,  the 
one-dimensional von Karman spectrum given as 

(6.12) 

This is important since it provides the primary point of contact with the calculated 
results of Van Atta & Wyngaard discussed later. 

By substituting (6.9) into (6.5) i t  is straightforward to show that n,(k)+k-? for 
large k ,  confirming the analysis of $5. The extent of the k-9  region is, of course, limited 
by viscosity just as is the k 3  region in the velocity spectrum. This could have been 
taken into account by choosing a form for E(k) such as that proposed by Pao (1965): 
which cuts off exponentially above ky  - 0.15. Since the turbulent-mean-shear 
spectrum cuts off so rapidly compared with the velocity spectrum this added 
complexity hardly seems warranted, even for calculations of the mean-square 
pressure gradient. 

Figure 1 shows the turbulence-mean-shear pressure-spectrum function n,(k) 
calculated from (6.5) and (6.9). Figure 2 shows the calculated one-dimensional 
spectrum from (6.7) and (6.9). The calculated values are summarized in table 1 .  Both 
spectra have been normalized by the mean shear K ,  the rate of dissipation of 
turbulent energy per unit mass E and the lengthscale 1 defined by 

u3 

€ = d .  (6.13) 

By integrating (6.9) i t  can be shown that h = 0.961. 
From (6.5) the coefficient of proportionality corresponding to the k-9 range in the 

spectrum function for the turbulence-mean-shear interaction is seen to be 
ga z 1.0701. The corresponding range in the one-dimensional spectrum can be 
obtained directly from (6.7) as? 

1 
-Fbps(kl) = 0.30701K~Qkp. 
P2 

(6.14) 

It is interesting to note that this value is not times the spectrum-function 
coefficient, which would be expected from the isotropic relations for scalar spectra. 
This is because the turbulence-mean-shear pressure fluctuations are not isotropic 
even though the turbulence itself is assumed to be. It has already been noted that the 
constant of proportionality for the k-8 range is identically zero, since we have assumed 
isotropic turbulence. 

7. The turbulence-turbulence interaction pressure spectrum 
From (4.8) the turbulence-turbulence interaction pressure spectrum is given by 

We follow Batchelor (1951) closely and assume that fourth-order moments of the 
turbulence can be related to second-order moments as though they were Gaussian 
(Millionshchikov 1941). We have 

Ej,,,(k) = F,,,(k-k’)F,,,(k’)d3k’+ F,,,(k--k’)~,l(k’)d3k’, (7.2) 1 s 
t Note that this must be multiplied by 2 to obtain the half-line spectrum value. 
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FIGURE 1 .  Turbulence-mean-shear pressure-spectrum function. 

where a contribution a t  k = 0 has been dropped. For isotropic turbulence this 
hypothesis is supported at  moderate wavenumbers by the detailed measurements of 
Frenkiel & Klebanoff (1966) (see also Monin & Yaglom 1975), as well as by the spectral 
calculations of Van Atta & Wyngaard (1975). 

By substituting (6.2) and (7.2) into (7.1), Batchelor’s result is readily obtained as 

d3k’, 
--FP,p(k) 1 = -JE(k’)E(/k-k’l)- 1 sin4 $ 
P2 SIC2 Ik - k’14 (7.3) 

where $ is the angle between k and k‘. 
To proceed beyond this point we assume the same empirical form for E ( k )  as before. 

Substituting (6.9) into (7.3), transforming to spherical coordinates and integrating 
out the angular dependence yields 

5 1  

+ 6 A 2 x % + $ 4 3 x ~ + & 4 4 x ~ }  l:f;]dk’, (7.4) 

[G(k , Ic ’ ){ ( -A)A,d- -A z-S 

where means that the bracketed term is to be evaiuated at these limits and where 

A, = a4-22a2+1, A ,  = -44a3+4a, A,  = 6a2-2, A ,  = -4a, A,  = 1 ,  (7 .5)  

1 + A,( k2 + k‘2) 
2kk’A2 ’ 

a =  ( 7 . 6 )  
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FIGURE 2. One-dimensional turbulence-mean-shear pressure spectrum. 
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kl 
0.10 
0.20 
0.30 
0.50 
0.55 
0.70 
0.77 
1 .o 
2.0 
3.0 
5.0 
7.0 
10.0 
20 

1.25 x 
4.60 x 
9.13 x 
1.77 x 10-l 
1.91 x 10-1 
2.16 x 10-l 
2.19 x 
1.99 x 10-1 
6.38 x 
2.06 x 
3.88 x 10-3 
i .20 x 10-3 
3.34 x 10-4 
2.69 x 10-5 

2.56 x 
6.55 x 
1.00 x 10-1 

1.33 x 10-1 

1.34 x 10-lt 
1.27 x 10-l 
1.19 x 10-1 
9.19 x 10-2 
2.16 x lop2 
6.44 x 10-3 
1 . 1 5 ~  10-3 
3.50 x 10-4 
9.70 x 10-5 
7.81 x 

t maximum value. 

TABLE 1. Turbulence-mean-shear interaction spectrum 
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kl 
0.1 3.50 x 10-4 6.48 x 10-2t 
0.2 2.08 x 10-3 6.46 x 
0.3 4.71 x 10-3 6.41 x 
0.5 1.24 x 6.23 x 
0.7 2.21 x 10-2 5.96 x 
1 3.74 x 10-2 5.46 x 
2 6.49 x 3.60 x 
2.2 6.54 x 10-2t 3.28 x 
3 5.95 x 10-2 2.27 x 
5 3.53 x 10-2 1.02 x 10-2 
7 2.09 x 5.40 x 10-3 

10 1.08 x 2.60 x 10-3 
20 2.55 x 10-3 5.73 x 10-4 
30 1.04 x 10-3 2.29 x 10-4 
50 3.26 x 10-4 7.08 x 10-5 
70 1.50 x 10-4 3.25 x 10-5 

100 6.61 x 10-5 1.42 x 

t maximum value. 

TABLE 2. Turbulence-turbulence interaction spectrum 

(k’h)6 
[ 1 + ( k’h)2]7 [2kk’h2]q 

G(k ,  k’) = (7 .7 )  

Substituting (7.5)-(7.7) into ( 7 . 4 ) ,  and rearranging the terms leads directly to  the 
more convenient equation 

where y = k‘ /k  and I ( a )  is defined by 

I ( a )  = [ ~ a 2 - ~ ] [ ( a + l ) ~ - ( ( a - l ) f ] - ~ u [ ( a + l ) ~ + ( u - 1 ) ~ ] .  (7 .9 )  

It is straightforward to show that, as k h - t m ,  I ( a )+ I (y )  only and that the contri- 
bution to the integral for y < (kA)-l is negligible. Thus 

1 -F, p 2  P P (k)+k-Y for large kh. 

The spectrum function for the turbulence-turbulence interaction spectrum can be 

(7 .10)  

It follows immediately from the asymptotic behaviour of I?,, that p-2mt(k) a k-8 
for large kh as already deduced in $5 .  

Equation (7 .8 )  has been integrated numerically for a number of values of LA. The 
calculated values of pP2mt(k) are given in table 2 and plotted in figure 3 .  The constant 
of proportionality for the subrange of n ( k )  has been obtained from the integration 
as up = 1.32a2, so that 

1 
-n ( k )  = 1.32a2&d. 

defined as before; from isotropy the result is 

n,(k) = 4xk2 P,, p ( k ) .  

(7 .11)  
P2 
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FIGURE 3. Turbulenceturbulence pressure-spectrum function. 
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FIGURE 4. One-dimensional turbulence-turbulence pressure spectrum 
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The coefficient is identical with that estimated from the pressure-fluctuation structure 
function by Monin & Yaglom (1975) using the results of Obukhov (1949).  

The one-dimensional spectrum (which could be measured) can be calculated from 
the isotropic relation as 

(7 .12)  

The normalized results are summarized in table 2 and are plotted in figure 4 .  It follows 
from (7.12) that  the one-dimensional version of the inertial subrange is? 

Flppt(kl) = (1.32) ~b?k; : .  (7 .13)  

8. Higher-order velocity spectra and their relation to pressure spectra 

can be written as (cf. Monin & Yaglom 1975) 
An immediate consequence of isotropy is that  the fourth-order velocity spectrum 

ki ki k, k, 
ej, m n ( k )  = (FLL, LL-2FLL, N N - 4 F L N ,  L N  + F N N ,  N N )  

k4 

The FLL, LL,  FLL, ", etc. are functions of k and are Fourier analogues of their more 
familiar counterparts, the correlation functions BLL, L L ,  etc. The subscript L indicates 
that  the Fourier velocity component is aligned with the wavenumber vector, while 
M and N indicate orthogonality. 

Direct substitution of (8.1) into (7 .1)  yields 

(8 .2)  
1 
ppp, p ( k )  = FLL, LL(k). 

This equivalence of the pressure spectrum and one of the fourth-order velocity spectra 
is cause for some concern, since Van Atta & Wyngaard (1975) showed that the 
one-dimensional fourth-order velocity spectrum Fil ,  l l (kl)  has a k;! inertial subrange. 
This is especially worrisome, since they began with the same quasi-normal hypothesis 
relating fourth-order moments to second-order moments. 

By noting that 

(8.3) 

FLL, L L  = 4 1 ,  i i (k,  0, 

FLL, N N  = 41, z z ( k , O y  O),  

FLN, LN = Fiz, n ( k ,  0, O),  

%N,  N N  = 42,22(k ,  0, O),  

F'M, N M  = F23,23(k, 0, O), 

FNN, M M  = Fz2,33(k, 0, O),  

t Note that this must be multiplied by 2 to obtain the corresponding half-line spectrum value. 
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kl 
0.05623 
0.1000 
0.1778 
0.3162 
0.3981 
0.5012 
0.6310 
0.7943 
1 .ooo 
1.259 
1.413 
1.585 
1.995 
2.512 
3.162 
3.981 
5.012 
6.310 
7.943 

10.000 
15.849 
31.623 

too.Oo0 
316.228 

1000.000 

FLL, LL FLL, N N  F L N , L N  F N N , N N  F N N , M M  
1.61 x 10-4 2.00 x 10-5 7.03 x 10-5 1.61 x 1 0 - 4  2.01 x 10-5 
5.07 x 10-4 6.28 x 10-5 2.22 x 10-4 5.07 x 1 0 - 4  6.34 x 10-5 
1.59 x 10-3 1.93 x 10-4 7.00 x 10-4 1.60 x 10-3 1.99 x 10-4 
4.89 x 10-3 5.61 x 10-4 2.18 x 10-3 4.97 x 10-3 6.11 x 10-4 
7.55 x 10-3 8.24 x 10-4 3.41 x 10-3 7.76 x 10-3 9.44 x 10-4 
1 . 1 5 ~  1 . 1 6 ~  5 . 3 0 ~  low3 1.21 x lo-' 1 . 4 4 ~  
1.73 x 1.50 x 8.13 x 1.86 x lo-' 2.16 x 
2.51 x 1.68 x 1.23 x lop2 2.84 x 3.13 x 
3.49 x 1.37 x 1.80 x 4.29 x 4.36 x 
4.57 x lo-' 7.981 x 2.53 x lo-' 6.40 x lop2 5.70 x 
5.08 x - 1.05 x 2.93 x lo-' 7.74 x 6.35 x 
5.53 x lo-* -2.50 x 3.35 x 9.29 x 6.92 x 
6.10 x -6.05 x 4.11 x loe2 1.28 x lo-*  7.62 x 
6.07 x lo-' -9.46 x 4.62 x lo-' 1.63 x 10-l 7.59 x 
5.45 x lop2 -1.15 x lo-' 4.74 x 1.86 x lo-' 6.81 x lop3 
4.46 x - 1.15 x 4.47 x 1.89 x lo-' 5.56 x 
3.36 x -9.98 x 3.91 x 1.74 x lo-' 4.20 x 
2.37 x -7.78 x 3.23 x lo-' 1.47 x lo-' 2.96 x lop3 
1.60 x lo-' -5.60 x 2.55 x lo-' 1.18 x lo-' 2.00 x 
1.04 x lo-' -3.81 x 1.95 x lo-' 8.95 x lo-' 1.29 x 
4.04 x - 1.57 x lop3 1.06 x 4.79 x lo-' 5.05 x 

6.34 x -2.62 x 6.37 x 2.65 x 7.91 x 
4.37 x - 1.83 x 10P 9.86 x 4.00 x 5.46 x 

8.85 x 10-4 -3.59 x 10-4 3.87 x 10-3 1.68 x 10-2 1.11 x 10-4 

2.98 x 10-7 - 1.23 x 1 0 - 7  1.54 x 10-5 5.53 x 10-5 3.72 x 10-8 

TABLE 3. Fourth-order velocity-spectrum functions 

F N M . N M  
7.03 x 10-5 
2.22 x 10-4 
6.98 x 10-4 
2.18 x 10-3 
3.40 x 10-3 
5.31 x 10-3 
8.20 x 1 0 - 3  

1.26 x 
1.93 x lop2 
2.91 x 
3.56 x lo-' 
4.31 x 
6.05 x 
7.76 x lop2 
8.93 x 
9.18 x lo-' 
8.49 x 
7.23 x 
5.78 x lo-' 
4.42 x lo-' 
2.37 x lo-' 
8.36 x 10-3 
1.32 x 10-3 
2.0 x 10-4 

2.77 x 10-5 

and again using the quasi-normal hypothesis, it  is possible to obtain these spectral 
functions in integral forms analogous to (7.3)-(7.9). Again using the modified von 
Karman spectrum for E ( k ) ,  each spectral function can be calculated. The results are 
summarized in table 3 and are plotted in figure 5. 

It is immediately clear that  the k-4 range in the turbulent pressure spectrum and 
the k d  range in the fourth-order velocity spectra are consistent. The pressure 
spectrum depends only on FLL,LL, which has a k-f inertial subrange, while the 
fourth-order velocity spectrum which depends on all of these is dominated by 
F", N N ,  F N M ,  N M  and F L N ,  L N ,  which have k-5 inertial subranges. An interesting 
feature of FLL, N N  is that it is negative for high wavenumbers. The inertial-subrange 
constants obtained from the calculations are summarized in table 4. 

A summation of all of the fourth-order velocity spectra of (8.1) has been carried 
out to obtain the one-dimensional fourth-order velocity spectrum F;l ,  l l(kl) .  The 
results are indistinguishable from the analysis and experimental data of Van Atta 
& Wyngaard (1975). The agreement with the results and data of Van Atta & 
Wyngaard gives considerable confidence in the use of the quasi-normal hypothesis 
for the inertial-subrange calculations, and the semi-empirical form for E( k )  given by 
(6.9) and the deductions from it. 

9. The net pressure spectrum 
The net pressure spectrum is the sum of the contributions due to the turbulence- 

mean-shear interaction and the turbulence-turbulence interaction. Their relative 
contribution depends on the magnitude of the ratio Kllu.  Two cases will be illustrated 
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FIGURE 5. Fourth-order velocity-spectrum functions. 

a-2 e-1 d (4nk2 FLL, LL)  = 1.32 

a-2 e-1 ki (4xk2 FNN, M M )  = 0.370 

e-1 d (4xk2 FNN, ") = 5.77 

a - 2 ~ - ~ k ~ ( 4 ~ k 2 F N M , N M )  =2.86 
a - 2 e S k g ( 4 ~ k 2 F L L , N N )  = -1.24 a - 2 e - ~ d ( 4 x k 2 F L N , , , )  = 1.60 

TABLE 4. Inertial-subrange constants for fourth-order velocity-spectrum functions 

here: Kl/u = 1 and Kl/u = 2.95. The former represents a value typical of many shear 
flows, while the second is close to the maximum observed value and corresponds 
closely to the jet experiment described in Part 2 of this paper and to the atmospheric 
surface layer. 

The one-dimensional spectra for Kl/u = 2.95 are shown in figure 6. As expected, 
the contribution of the mean-shear-turbulence interaction dominates a t  wavenumbers 
near the peak in turbulent energy, with the result that the net pressure spectrum also 
shows a pronounced peak. Note that, while there is evidence of the presence of the 
k-y region, its existence would not be at all obvious because of contributions in the 
same range from the turbulenceturbulence interaction. In  fact, a k-8 to k-8 line could 
be drawn through the region to the right of the peak. 

The one-dimensional spectra for Kl/u = 1.0 are shown in figure 7. Although the 
mean-shear-turbulence contribution is still present and contributes almost as much 
to the mean-square pressure fluctuations as does the turbulence-turbulence interaction 
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FIGURE 6. Net one-dimensional spectrum for Klju = 2.95. 

(see 5 lo), the k-y range is not present (except in the constituent spectrum) and only 
a small peak is observed. In  fact, if a line is drawn using only the data between kl = 1 
and 10, an experimenter could be led to believe that a k-i range was more appropriate, 
since the k-: range does not become apparent until after kl = 10. 

It should be clear from these examples that the shear contribution will be 
impossible to isolate from spectral data, even in flows with moderate-to-high shear 
rates relative to the turbulence shear rate u/ l .  Therefore it is not surprising that such 
a range has not been previously observed. Moreover, in view of the limited frequency 
response of many probes and the multiplicity of results that are possible if only data 
below kl = 10 is used, it is not surprising that there is confusion in the literature 
regarding the existence of the k-5 range. 

10. The mean-square pressure fluctuation 
The net pressure spectrum can be integrated to yield the mean-square turbulent 

pressure fluctuation - _  
2 = Pi+P,2, 

where = 6 7rs(k) dk 

(10.1) 

(10.2) 

and = fom n,(k) dk. (10.3) 
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FICIJRE 7. Net one-dimensional spectrum for KZ/u = 1.0. 

Direct integration of the turbulence-mean-shear interaction spectrum of (6.5) and 
(6.9) yields 

1 -  
7 ~ :  = O.33K2l2u2, 
P 

(10.4) 

where I is the lengthscale defined by (6.13) and u is the velocity scale defined by (6.10). 
This can be compared with the results of Kraichnan (1956) cited in ( 1 . 1 ) .  The exact 
value of the coefficient is dependent on the particular spectral model used. I n  view 
of the fact that the spectrum peaks sharply a t  low wavenumbers, where its shape 
depends strongly on flow geometry, any applicability of this result to a real shear 
flow should be regarded as fortuitous. However, for flows characterized by single 
time- and lengthscales (Kl/u = const), the result must be dimensionally correct, 
although the coefficient depends on the flow geometry. 

The turbulence-turbulence spectrum can be integrated numerically to yield 
- 
p t  = 0 . 4 2 ~ ' ~ ~ .  (10.5) 

This is close to results of Hinze (1959) and Uberoi (1953), who obtained a coefficient 
of 0.49, but is somewhat higher than Batchelor's estimate of 0.34. The agreement with 
Uberoi's result is especially significant, since unlike the others he used the measured 
fourth-order velocity correlations to calculate the mean-square turbulent pressure 
fluctuations. 
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I n  summary, the mean-square turbulent pressure fluctuations for homogeneous 
turbulent flow superimposed on an uniform mean shear have been calculated as 

1 -  
> p 2  = O.33K2l2u2 + 0.42u4, (10.6) 
P 

where the first coefficient depends on the spectral model used. Note that we can be 
more optimistic about the applicability of spectral models a t  wavenumbers above that 
corresponding to the peak (because of local isotropy) than about the mean-square 
values which are strongly influenced by the large-scale anisotropic fluctuations. 

1 1. The mean-square pressure-gradient fluctuation 
The mean-square fluctuating pressure gradient is given by 

00 

( V P ) ~  = k2 m(k)  dk. ( 1 1 . 1 )  
0 

As pointed out by Heisenberg (1948) and Batchelor (1951), the pressure-gradient 
fluctuations will be dominabed by wavenumbers in the inertial subrange since, unlike 
the velocity spectrum, the pressure spectrum falls more rapidly than kk2. 

The contribution of the mean-shear-turbulence interaction can be obtained 
directly using (6.5), with the result that  

00 

= [ k2 n,(k) d k  = :p2K2u2, (11.2) 
J o  

where we have used the fact that the integral of E(k)  is $'. 
The turbulence-turbulence contribution to the mean-square pressure-gradient 

fluctuation cannot be obtained by directly integrating k2mt using the previously 
obtained values of mt. This is because k2nt --f k-4 for large wavenumbers, and therefore 
cannot be integrated over an infinite domain. Thus, as noted by Batchelor, the value 
of (Vp) t /p2  will depend on the extent of the equilibrium range and in turn is 
dependent on the turbulent Reynolds number uZ/v (or alternatively Z/q). 

George (1974) and Jones et al. (1979) showed that the pressure spectrum in 
Kolmogorov variables could be written as 

1 
- - 7 ~  (k) = d v i  f t ( k q )  
P2 

(11.3) 

and that the k-i range could be obtained by an asymptotic matching of the function 
ft with the analogous low-wavenumber function 4 given by 

1 
-m (k) = u41F,(kl) 
P2 

(11.4) 

in the limit as l /q  --f 00. We can use these to  write 

1 -  
-p(Vp)t  = U ~ Z - ~ ( J ~ ' " "  d(kZ) (kZ)2F,(kZ)+ R;l Jr d(kq) (k?l)eSt(kq)), (11.5) 

where A is a constant and is determined so that the integral is divided in the inertial 
subrange (the k-5 range) where both scaling laws are valid. 

The second integral can be ignored in the limit of large R,, since the integral is an 
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absolute constant. The first integral can be further subdivided if All7 is large enough 
(say greater than 30) so that 

AUT 
[AE1'dkZ ... = r3'dkZ ... + [ dkl ... . (11.6) 

J o  J o  J 30 

Since by kl = 30 the inertial-subrange formula is approximately valid, the second 
integral can be obtained analytically, while the first can be obtained by numerically 
integrating k27rrt. Thus for A1 f 7 > 30 the following relationship is approximately 
valid : 

1 -  
-(Vp),2 sz u 4 P  
P2 

(11.7) 

If A is chosen as 0.15 to correspond to the peak in the dissipation spectrum (where 
the energy spectrum starts to  roll off rapidly), this expression can be further reduced 
to 

(11.8) 
1 -  

- (Vp) t  x u4P[1 .30Rf -  16.941 
P2 

for R, > 2000. 
Batchelor (1951 ) cites the approximate relation 

1 -  u3 
- (Vp)? = 2 2 6 ~  - . 
Pa A3 

Using R, = d 3 0  RZ, (11.8) can be rewritten as 

(11.9) 

(1 1.10) 

which is very close to Batchelor's result as R,+ 00. The slight difference in these 
results arises from the manner in which the spectral truncation is carried out 
in (11.5). 

PART 2. MEASUREMENT AND COMPARISON WITH THEORY 

12. Relevance of theory to jet-mixing-layer experiment 
I n  Part 2 of this paper our objective is to present experimental data against which 

the theoretical considerations of Par t  1 can be tested. Because of the limitations 
imposed by the assumption of isotropy (at all wavenumbers), quantitative 
comparisons should be possible only a t  wavenumbers corresponding to the inertial 
subrange (assuming the Reynolds number is high enough), where local isotropy can 
reasonably be assumed. However, in view of the frequent success of isotropic theories 
beyond the expected range of validity, one might reasonably expect a t  least 
qualitative agreement a t  much lower wavenumbers than those for which isotropy can 
be assumed. We shall see that this is indeed the case for the jet-mixing-layer 
experiment reported here. 

The measurements presented below were taken a t  the centre of the mixing layer 
of an axisymmetric turbulent jet. This particular flow has the advantage of a 
relatively high turbulence intensity, which helps raise the pressure signal produced 
above that of the background noise. I n  addition the ratio of the mean shear rate K 
to the turbulence scale u/l is about the largest value which can be obtained in a 
laboratory flow, thus maximizing the importance of the turbulence-mean-shear-rate 
contribution relative to that of the turbulenceturbulence interaction. Finally, the 
fact that  the mixing layer grows in approximately similar fashion provides a 
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convenient way to scale the data, an advantage if a range of scales is desired and 
if non-scaling measurement errors are suspected. The jet mixing layer does have the 
disadvantage that the turbulence is strongly inhomogeneous in the radial direction. 
Even so, as Davies, Fischer & Barrett (1963) and Bradshaw, Ferris & Johnson (1964) 
have shown, the integral scales are nearly independent of radius, and the 
inhomogeneity is almost entirely due to intermittency . 

In  the following sections we shall first review previous attempts to measure 
fluctuating pressures. Then we analyse the response of any pressure probe to velocity 
contamination and discuss the particular characteristics of our probe. The problems 
of interpreting spectral measurements in high-intensity flows are briefly reviewed 
because of the increasingly important role these effects play as the rate of spectral 
roll-off increases. The basic characteristics of our jet are discussed and spectral data 
for the fluctuating pressures are presented. Finally the data are compared with the 
theory of Part 1 .  

13. Historical background of attempts to measure pressure fluctuations 
The first serious attempts to measure fluctuating pressures in free turbulent flow 

appear to be due to Rouse (1953), Kobashi (1957) and Kobashi, Kono & Nishi (1960). 
Rouse measured in turbulent cylinder wakes. Attempts to extend the work of Rouse 
were made by Sami, Carmody & Rouse (1967) and Igarishi & Fujisama (1968). 
Further attempts at cylinder-wake measurements were made by Strasberg ( 1963) and 
Mackawa (1965). 

An intensive study of the pressure fluctuations in an axisymmetric jet mixing a t  
UTIAS was reported by Siddon (1969), who constructed a special probe to compensate 
for velocity contamination. Encouraged by Siddon’s success, numerous investigators 
began to measure jet-pressure fluctuations with a variety of techniques. Jones and 
his coworkers a t  the University of Illinois developed a helium-bleeder probe for jet- 
mixing-layer measurements (Spencer 1974 ; Spencer & Jones 1971 ; Planchon 1974). 
Arndt and his coworkers a t  the Pennsylvania State University developed a probe 
similar to Siddon’s without compensation and reported mixing-layer fluctuating- 
pressure measurements (Arndt & Nilsen 1971 ; Arndt, Tran & Barefoot 1974) ; this 
probe will be discussed in detail later. Fuchs and coworkers a t  the Institute for 
Turbulence Research, DFVLR, Berlin, reported extensive measurements using 
shrouded microphones (Fuchs 1970, 1972; Michalke & Fuchs 1975). Later in this 
paper it will be shown that the measurements taken by all of these groups using four 
different techniques produce the same spectra for the jet mixing layer and that these 
measurements are in agreement with the theoretical spectrum predicted earlier in this 
paper. 

Elliot (1972) used a probe based on a fluctuating-lift principle to measure pressure 
spectra in the atmosphere. Application of the criteria developed in this section suggest 
that  his measurements are in error, a t  least at the highest frequencies, since they 
yielded spectra unlike the expected pressure spectra but very much like the spectrum 
expected where velocity-contamination effects dominate. On the other hand, recent 
measurements by Mikkelsen (1978), using a probe similar to that used by Miksad 
(1976) in the atmospheric boundary layer, as well as the earlier measurements of 
Gossard (1960), satisfy the criteria proposed here and appear to be relatively 
uninfluenced by velocity fluctuations. 

Numerous attempts have been made in the past twenty years to measure the 
wall-pressure fluctuations beneath a turbulent flow (for a summary see Willmarth 
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1975). These measurements are not of interest here, since we have confined our 
attention to turbulent free shear flow a t  high turbulence Reynolds number in the 
absence of boundary effects. 

14. The measurement of turbulent pressure fluctuations 
The effect of flow-probe interactions on attempts to measure static-pressure 

fluctuations with Pitot-static-type probes has been investigated in detail by Siddon 
(1969) and Fuchs (1972). Fuchs lists the following possible sources of measurement 
error: 

(i)  acoustic contamination due to spurious disturbances superimposed on the flow 
and originating exterior to it ; 

(ii) wind noise arising from the flow over the aerodynamic body containing the 
pressure-sensitive orifice ; 

(iii) acceleration response to  flow-induced vibrations of the probe ; 
(iv) $ow-affected sensitivity arising from, for example, directional effects ; 
(v) resolution error due to averaging over the surface of the probe; 
(vi) error due to juctuating cross-$ow; 
(vii) response to axial-velocity $fluctuations. 
I n  the tests by Fuchs and Siddon and in those of the present investigation, the 

sources (i)-(iv) could be shown not to  be significant contributors to pressure- 
measurement error by a variety of experiments in turbulent and non-turbulent flow. 
These experiments have been described in detail by Fuchs (1972), Siddon (1969) and 
Arndt & Nilsen (1971). 

The problem of spatial averaging by finite probes (v) is one of the classical problems 
of turbulence measurement. While corrections could be derived for the averaging of 
disturbances over the finite sensing area of the probe, the safest approach (and that 
utilized in this investigation) is to regard as unreliable any measurement corresponding 
to scales smaller than twice the size of the probe. For the Pitot-static probe introduced 
in $15 (shown schematically in figure 8) we estimate this 'size' to be the distance 
of the sensing holes from the tip of the tube, or five probe diameters (5 x f in.). 

The errors arising from the axial and cross-flow fluctuations were investigated both 
theoretically and experimentally by Siddon (1969) and Fuchs (1972). Siddon, 
following the earlier work of Strasberg (1963), postulated that the error a t  a given 
scale of measurement depended only on the local instantaneous velocity and its 
derivatives ; that is, 

1 
-[I?m(t)-$(t)l = f {C,v", zij, !? v" %} , 
P at 7 at at 

(14.1) 

wherep?,(t) is the measured instantaneous static pressure andfi(t) is the value i t  would 
have had were the probe not there. 

By expanding (14.1) for small values of the arguments, insisting on an error that 
is invariant to reflections about the probe axis (since the probe cannot distinguish 
between positive and negative cross-flow), and neglecting the acceleration terms, 
Siddon obtained an expression for the error (in isotropic flow) as 

(14.2) 
1 

P 
-M,(t)-@(t)] = A.iiZ(t) +B[?(t)+zij2(t)]. 
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By decomposing into mean and fluctuating parts, the error in mean static-pressure 
measurement can be obtained as 

1 
-[Pm-P] = A ( V + G ) + B ( g + $ ) ,  
P 

(14.3) 

while the error in the fluctuating pressure is 

- - - 
(14.4) 

1 
- bm 
P 

= A[2 UU + (u' - u')] + B[(w' - w') + (w' - w')]. 

It has been assumed that the probe is aligned with the flow so that the only non-zero 
component of mean velocity is the axial one. The coefficient A measures the 
sensitivity to  streamwise velocity fluctuations, while B measures the sensitivity to 
cross-flow disturbances. 

Fuchs (1972) arrived a t  a similar result for the effect of the streamwise disturbances 
(the first term in the equations above) from the unsteady streamline Bernoulli 
equation. He was also able to show directly that the neglect of the acceleration terms 
was justified as long as the diameter of the probe was significantly less than the scale 
of the pressure disturbance. This condition has already been imposed here by the 
spatial-resolution criterion adopted earlier. 

Siddon and Fuchs noted that the sensitivity to  streamwise velocity variations could 
be minimized by proper positioning of the sensitive ports. For Siddon's probe (and 
the probe used here) A x 0, while Fuchs estimated A x -0.075 for his shrouded 
microphone. Siddon estimated the upper bound on the cross-flow error to be 
B x -0.45, and designed a special probe to compensate for this. His measurements 
indicated that B seems to depend on the turbulence parameters, a t  least in the jet 
mixing layer. For measurements along the centre of the mixing layer in an 
axisymmetric jet ( r  = fD), Siddon found less than 1 dB difference between spectra 
measured with his compensated and uncompensated probes. We shall see later that 
this implies that  IB( must be substantially less than 0.45 in the mixing-layer centre. 

The error in the mean-square static-pressure fluctuation is readily obtained from 
(14.4) as 

1 - -  pz b:, - P'l 

+ B [ g + g ] )  

- -~ - - + (A2[4U2 G+ 4 U G +  (u' - u')'] + AB[~U(UW' + UW') + (u* - u') (v2 -v2)  
- - - - + (u2 -2) (w2 - w2)]  + B2[(v2 -$)2 + (w' - w2) (w2 - w2) + (wz - w ~ ) ~ ] ) .  (14.5) 

Since our interest here is only in the universal-equilibrium range of the turbulence 
spectrum, we will assume isotropy. Moreover, we shall neglect third-order moments 
of the velocity. Immediate consequences of these assumptions on (14.5) are the 
elimination of the- correlation as well as uw2, uw2 and?. The spectral decomposition 
of this reduced equation is readily shown to be 

_ _ _ _  
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where the Fs are the three-dimensional spectra and the argument k is suppressed for 
convenience. 

Equation ( 14.6) can be further decomposed into spectra involving only velocities 
by noting that isotropy implies (cf. Monin & Yaglom 1975) 

(14.7) 

and Fp, LL = - PFLL, L L ~  Fp, N N  = - PFLL, N N .  (14.8), (14.9) 

By direct substitution, the error spectrum of (14.6) can be derived in terms of our 
previously derived velocity spectral functions. Reference to  figure 5 indicates that  
the errors arising from the pressure-velocity-squared correlations will present the 
most serious problem since t,hey have the same k-i slope as the pressure. All of the 
other terms will have an  easily recognizable k-4 slope, which will dominate the 
pressure spectrum, if significant. 

By applying the results of $8 to  (14.6)-(14.9). integrating over k ,  and L, to  get the 
one-dimensional spectra, and dividing by F;,,, the relative error in the measured one- 
dimensional pressure spectrum in the inertial subrange can be shown to be given by 

+ 1.6A2 1 +- +4.4B2 (kZ)f. (14.10) [ ( 3 I 
The first term represents the contribution from the pressure-velocity-squared 

correlations ( k 6  error), while the second represents the leading axial and cross-flow 
contributions (k-4 error). It is interesting to  note that the effect of the axial-velocity 
fluctuations increases as the turbulence intensity decreases. This is because the 
pressure spectrum (denominator) decreases as u4, while the velocity spectrum 
decreases only as u2. 

If the worst-case values of A - - 0.0075 and B - -0.45 are used in (14.10) and we 
take u / U  - 0.25 (which corresponds to the jet experiment described later), the (kZ)% 
term dominates for k1 > 0.3 and the relative error is unity near kl z 0.6. Since this 
is well below the wavenumber at which we expect the turbulence-turbulence 
contribution to become important, a I%-; range will not be visible in the measured 
spectrum if the estimates of A and B are reasonable. For the probe used in the 
experiments described later, values of A = -0.0075 and B = -0.15 give a relative 
spectral error equal to unity a t  kl w 26, which is near that which is observed for the 
measurements in figures 14 and 15. 

15. The static-pressure probe 
The unsteady pressure probe used in this investigation was developed by Arndt 

& Nilsen (1969) and is shown in figure 8. The sensitive element is a Bruel & Kjaer + in. condenser microphone, which is connected to a cathode follower and powered 
by a B & K Type 2801 Microphone Power Supply Unit. The probe is a standard 
Pitot-static tube, 0.125 in. outside diameter and 2.5 in. in length. Four static-pressure 
holes are spaced 90' apart and are located a t  a distance of 5 tube diameters from 
the tip of the probe to minimize sensitivity to  cross-flow error. The leeward end of 
the probe is terminated by the microphone. 
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FIQURE 8. Schematic of pressure probe. 

Several criteria were considered in selecting this probe design. These included the 
constraints that the components be off-the-shelf items in order to  minimize 
development time and that the frequency response be as high as possible while 
minimizing probe size. The length of the tube was selected to  minimize interference 
effects from the shroud while not compromising the frequency response. The 
frequency response of the system is limited by the Helmholtz-resonator response of 
the tube and microphone cavity and can be calculated from 

(15.1) 

(Strasberg 1963), where w, is the resonant frequency, V is the cavity volume, 1, is 
the length of tube, a. is the speed of sound and rT is the tube radius. The resonant 
frequency f ,  was computed to be 1000 Hz. In order to  obtain a flat response over 
the broadest range of frequencies, damping material was placed in the probe tube 
to  diminish a response peak a t  the tube resonant frequency. By trial and error, the 
damping was adjusted to  be approximately 70 Yo of critical. (This value was estimated 
initially from the transient response of the device to  impulsive pressures created by 
bursting balloons and verified during the calibration procedure when the steady-state 
response function was measured.) The frequency-response function under these 
conditions is given by 

(15.2) 

At the critical frequency the theoretical response is down by less than 0.2 dB. The 
phase lag induced by damping is quite large a t  frequencies approaching f , ,  but this 
is not a factor in measuring spectra. 

The response of the B & K cathode follower rolled off at frequencies less than 
100 Hz, and a compensating network was developed to ensure an overall flat response 
of the probe to  frequencies as low as 20 Hz. Thus the probe was designed to have 
flat response in the frequency range 20-1000 Hz. The upper limit is compatible with 
the frequency corresponding to  the assumed spatial resolution given by 

UC f =-- 
10d’ 

(15.3) 
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FIWJRE 9. Probe frequency-response function. 

where U, is the convection velocity and d is the probe diameter. This corresponds 
to 700 Hz a t  a jet velocity of 30 m/s ( U ,  x 18 m/s). 

The probe was calibrated in a small reverberant chamber using a 6 mm diameter 
B & K microphone as standard. Details of the calibration procedure are given in Arndt 
& Nilsen (1971). The measured frequency response is shown in figure 9. Sensitivity 
to angle of attack, determined by tests in uniform flow, indicated that the pressure 
measurements were insensitive to angles as high as 15’, corresponding to an 
equivalent turbulence level of 27 (Barefoot 1972). Various other techniques used 
to determine the sensitivity to turbulence are described in Arndt & Nilsen (1971) and 
Bahnk (1971). 

Probe alignment in the mean-flow direction was accomplished by using a special 
probe consisting of four hypodermic needles with their tips bevelled a t  4 5 O  to the 
probe axis. By balancing the pressure sensed in each of two probes, alignment in 
two perpendicular planes was possible. 

Acoustic contamination of the pressure signal from fan noise and other extraneous 
noise sources was also studied. Details are given in Barefoot (1972), who found that 
the optimum signal-to-noise ratio was obtained a t  a jet velocity of approximately 
25 m/s. The variation in signal-to-noise ratio was only weakly dependent on velocity 
near the minimum; with fan noise as the major contributor a t  higher velocities, 
and extraneous sources of sound a t  lower velocities. 

16. Taylor’s hypothesis and spectral analysis 
Taylor’s hypothesis in its simplest form states that  time variations seen by a fixed 

probe in a moving Auid are the result of spatially varying disturbances which are 
convected past the probe. This can, of course, never be strictly true for turbulence, 
since flow disturbances are both time- and space-dependent. I n  many cases, however, 
the temporal variations occur over times long compared with the time for disturb- 
ances to traverse the probe, and the temporally varying signal can be interpreted 
as a spatially varying one using 

or the Fourier-transformed counterpart 

w 
UC 

kx-. 

(16.1) 

(16.2) 

If the turbulence intensity is sufficiently great, Taylor’s hypothesis in the form of‘ 
(16.1) is not valid because of the fluctuating convection velocity. This is because a 
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single wavenumber can be mapped into a band of frequencies corresponding to  the 
range of velocities which can convect it. The result is an aliasing (or spectral leakage) 
of the more energetic disturbances into adjacent wavenumbers which have less 
energy, thereby modifying the spectral shape. I n  general, the faster the roll-off (or 
rise) of the spectrum. the more serious the effect. 

Lumley (1965) was able to derive a differential equation relating the spectrum 
inferred from (16.1) to the true streamwise velocity spectrum. Wyngaard & Clifford 
(1 975) extended Lumley’s analysis to include the cross-stream velocity spectra and 
scalar spectra. These equations assume that the convected field is isotropic. The 
equations are 

streamwise velocity - _ _  
( k 2 F - 2 F ) - 2 ( k F + F )  (16.3) 

scalar 
- 

( k2F”+2kF) - (2kF+F)  (16.4) 

where Fm denotes the measured spectrum, and in (16.3) and (16.4) F denotes the true 
one-dimensional streamwise velocity spectrum and the true scalar spectrum 
respectively. 

It is easy to show by substitution that, if the spectrum has a power-law behaviour 
(as in the inertial subrange), the power law is unchanged but the coefficient is 
increased by an amount which depends on the turbulence intensity and the rate of 
roll-off; thus the measured spectrum overestimates the true spectrum. The over- 
estimates for the spectra measured in § 17 are 5 yo for the k-% range in the velocity 
spectra, and 8 % and 28 % for the k-: or k-y range in the pressure spectra. It follows 
that the dissipation will also be overestimated. I n  the jet mixing layer of 9 17 this 
overestimate is approximately 8 yo. 

I n  a turbulent shear flow an additional problem can arise because disturbances a t  
different wavenumbers can be convected a t  different velocities depending on their 
location in the flow. Lumley has established criteria for which the effect of spatial 
gradients on the convection velocity and the effects of the temporal evolution can 
be neglected and the disturbance can be assumed to  be sweeping past the probe with 
the local instantaneous fluid velocity. I n  many turbulent shear flows (such as the jet 
mixing layer) these criteria are satisfied for disturbances a t  scales corresponding to 
the inertial subrange and smaller. They are not satisfied in the lower spectral range 
of interest in this experiment, and an approach given by Wills (1964) will be applied. 

Wills suggests defining a wavenumber-dependent convection velocity that is valid 
a t  the larger scales where the equations above are not applicable. From measurements 
of the wavenumber-frequency cross-spectrum obtained from two-point velocity data, 
Wills substitutes k U ,  for the frequency and seeks the wavenumber-dependent 
convection velocity that maximizes the value of the spectrum a t  fixed k ,  i.e. 

(16.5) 

The technique was applied to measurements taken in the mixing layer of an 
axisymmetric jet similar to the one described in 5 17. While measurements were taken 
a t  the centre of the mixing layer a t  only one axial position, since the flow is nearly 
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Ea 
FIGURE 10. Schematic of the axisymmetric jet. 

r t X 

self-similar the results can be fitted with an empirical expression and scaled to yield 
for a limited range of wavenumbers 

= 0.57+0.013(kx)? (3 < kx < 300). (16.6) 

Wills also showed that the convection velocity averaged over all wavenumbers was 
nearly equal to the local mean velocity in the mixing layer. Equation (16.6) will be 
used in 3 18 for the pressure data. 

U 

17. The experimental facility and turbulence measurements 
Experiments were carried out in the mixing layer of a 12 in. axisymmetric jet 

(shown schematically in figure 10). The flow characteristics of the mixing layer were 
investigated in detail by Von Frank (1970), Arndt et al. (1974) and Lauchle & George 
(1972). The profiles of the mean and r.m.s. fluctuating streamwise velocity are shown 
in figure 11. Although the dynamical equations do not admit similarity solutions, the 
data collapsed to the curves shown to within experimental error over the range 
1 < x / D  < 5 when normalized by the jet velocity U ,  and the distance x from the 
exit plane. Note that no virtual origin was required. (We believe this to be due to 
the fact that the contraction boundary layer is laminar a t  the exit plane and that 
its thickness is several orders of magnitude less than the diameter of the jet exit.) 

Of particular interest in scaling the spectral data that will be presented is the rate 
of dissipation of turbulent energy E .  This cannot be directly measured because of the 
high turbulence Reynolds number and the resulting small Kolmogorov microscale ; 
therefore it must be obtained indirectly. At high turbulence Reynolds number, the 
fact that the energy dissipation is controlled by the energy-containing scales of motion 
implies e - u3/1, where u2 = ut + u: + ui and 1 is a lengthscale characteristic of these 
motions. Arndt el al. (1974), Davies et al. (1963) and Bradshaw et al. (1964)have shown 
that both mean-flow and turbulent correlations are nearly self-similar when scaled 
by x and U,. Thus we have 

_ _ _  

(17.1) 

where two of the constants must be chosen from the data. Direct measurements of 
ut, ui and 3 indicate that u / U ,  x 0.16. 
- -  
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FIGURE 11.  Profiles of mean and r.m.8. axial velocities in jet mixing layer normalized by 
similarity-like variables (1 < x / D  < 5 ) .  

Figure 12 shows q l ( k 1 ) , ,  the one-dimensional velocity spectrum, measured in a 
similar axisymmetric jet mixing layer by Khwaja (1980). Data were taken on the line 
for which U = 0.6UE, which corresponds to an axial traverse from the jet lip. These 
spectra are nearly identical with those obtained in the facility used in the pressure 
experiments. The wavenumbers were computed from the measured frequency 
spectrum by assuming the flow to be frozen in space and swept by the probe with 
velocity U, = O.6UE. This value corresponds to the convection velocity determined 
by Davies et al. (1963) from spacetime correlation measurements and to the average 
convection velocity determined by Wills (1964) from the spacetime cross-spectra. 
No corrections for the fluctuating convection velocity were applied to the data shown, 
but they were applied to the dissipation estimate below. 

The spectra are seen to collapse, as expected, for wavenumbers through the inertial 
subrange when plotted as q l / v E  x versus k, x, where k,  is computed from Taylor’s 
hypothesis as k, = 2nf/ U,. The inertial subrange (k-8 range) corresponds to 

(17.2) 

where a = 1.5. It follows immediately from the Kolmogorov result that the measured 
dissipation ern is given by 

E ,  = 0.048 - WE . (17.3) 

The spectrum and dissipation rate can be corrected for the spectral aliasing arising 
from the fluctuating convection velocity. From Lumley’s result (16.3), the spectrum 
is too high in the inertial subrange by approximately 5 %, and E ,  overestimates the 
true dissipation rate by almost 8 yo. Thus we obtain 

6 = o.o44U3,/x (17.4) 

X 
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FIGTJRE 12. Measured one-dimensional spectra of axial velocity (symbol = x / D ) .  

as our best estimate. Using u x 0.16UE yields an estimate for 1 as 

1 = 0.0862, (1 7.5) 

which is close to the integral scale obtained from the streamwise velocity correlation. 
We can use (17.4) and (5.3) to calculate the Kolmogorov microscale for the mixing 

laver as 
Y 

(17.6) 

Thus for the data of Khwaja and for the pressure measurements reported in $18, 
7 x 0.04-0.1 mm and Z/y x 600-1000. Therefore it is reasonable to expect several 
decades of inertial subrange in the data. Also, since the hot-wire and pressure probes 
are substantially larger than 7, the spectral roll-off at high wavenumbers will be due 
to probe-averaging effects. 

18. The pressure measurements 
An attempt was initially made to collapse the considerable body of pressure- 

fluctuation spectra that have appeared in the literature in recent years (Planchon 
1974; Fuchs 1972; Arndt et al. 1974). Although all these gave some indication of the 
expected k-a region, uncertainty about the calibrations and basic flow parameters 
made definitive statements difficult. Therefore an investigation a t  the centre of the 
mixing layer of the aforementioned axisymmetric jet was initiated. Arndt et al. (1974), 
using this facility, reported that at the centre of the mixing layer 

p’ = (p)a = O.0625($PE) or p’ = 1 . 2 6 ~ ~ ~ .  (18.1) 

From the theoretical considerations of Part 1, p’ is estimated a t  N 1 .9pu2, with the 
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FIGURE 13. Pressure-spectral data normalized by jet exit parameters. 

turbulence-mean-shear contribution dominant. If the contribution of this term is 
reduced by introducing a wavenumber-dependent shear as outlined below, the 
measured value is obtained. 

Spectral measurements were carried out using a Federal Scientific Real-Time 
Analyzer. The effective bandwidth was 10 Hz and the bandwidth-averaging time 
product was 400. Spectra were plotted on an (z,y)-plotter as log-spectrum versus 
frequency, and the data points were read from these plots. An upper limit on the 
relative spectral error due to averaging and data handling is estimated at 20 yo. The 
measured spectra were corrected for the temporal response of the probe up to a 
maximum correction of 2 dB. No attempt was made to correct for the limited spatial 
response nor were data recorded above the spatial cutoff defined earlier. 

Spectral measurements were made in the centre of the mixing layer a t  locations 
of z / D  = 1.5 and 3.0, where D is the jet diameter. Exit velocities of 19.8 m/s and 
30.5m/s were used, the lower velocity corresponding to  the smallest a t  which 
contamination due to background noise was deemed negligible. The Reynolds 
numbers based on exit velocity and diameter were 4.0 x lo5 and 6.2 x lo5 respectively. 
Frequency spectra normalized by only the exit parameters are shown in figure 13. 

Wavenumber spectra were computed from frequency spectra by applying the 
wavenumber-dependent convection velocity of Wills (16.6). The appropriate scaling 
for the pressure spectra in the range of wavenumbers shown is F1,,(L,)/u4Z versus kl .  
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u, XlD 
g =  19.8 1.5 
n =  19.8 3.0 
A =  30.5 1.5 - = 30.5 3.0 

Spectra normalized in this manner are presented in figure 14. The correction implied 
by (16.4) was not applied to the data shown. 

Also shown in figure 14 are two theoretical spectra computed from the results of 
$$6 and 7. The dashed-line spectrum is exactly the constant-mean-shear prediction 
shown in figure 6, where the normalized mean shear has been chosen to equal the 
maximum shear at the centre of the mixing layer (KZ/u = 2.95). Since the jet mixing 
layer only approximately satisfies the assumptions of constant mean shear and 
homogeneous turbulence, and then only for the smallest scales, an attempt has been 
made to compensate for the fact that the larger eddies see an average shear that is 
somewhat less than the peak centerline value. A wavenumber-dependent mean shear 
was obtained by first fitting a curve to the mean-velocity profile and then obtaining 
an average of its derivative between +7c/k, or a half-wavelength on each side of the 
measuring point. This wavenumber-dependent shear was then substituted into the 
results of tables 1 and 2 to obtain the spectrum shown. As expected, the spectrum 
at low wavenumbers is reduced. Figure 15 shows the component spectra for the 
wavenumber-dependent spectrum calculation along with the error spectrum pre- 
sented in $14. 

The spectral data show reasonable collapse for all but the lowest wavenumbers. 
In view of the large scales (of the order of the distance from the source), the high 
spectral curvature and the resultant spectral aliasing due to the fluctuating convection 
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shear. 

velocity, and in fact the complete breakdown of Taylor’s hypothesis, i t  would have 
been surprising if the spectra did collapse at these wavenumbers. (Note that this 
problem does not arise with the velocity spectrum, since i t  is nearly flat at low 
wavenum bers. ) 

There is some evidence of a systematic error in the normalized plots. The accuracy 
of the jet-exit-velocity determination was only 3-5 yo. Also since the measurements 
were taken a t  the centre of the mixing layer, where the velocity gradient is a 
maximum, additional error could have been introduced by a slight mislocation of the 
probe. Since the velocity enters the scaling in the fourth power, i t  is reasonable to  
attribute the observed systematic error to this source. 

The values of the constants A and B suggested in Q 14 were worst-case estimates, 
and lead to  the prediction that the error spectrum should dominate the turbulcnce- 
turbulence pressure contribution at nearly all wavenumbers. The lack of a k-5 range 
in the experimental data of figure 15 indicates that  those values for A and B were 
too large. The error-spectrum curve shown in figure 15 does not use these worst-case 
values, but instead assumed values of A = -0.0075 and B = -0.15. These values are 
merely upper-limit approximations chosen to be consistent with the data. 

The roll-off a t  high wavenumbers is attributed to the spatial averaging of the probe. 
At low wavenumbers the spectrum increases as frequency squared. The slope and 
the peak are taken to indicate that the pressure correlation is negative somewhere 
(cf. Lumley 1970). This interpretation is consistent with the measured pressure 

7 Y L M  148 
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correlations of Planchon & Jones (1974). The measured spectra of Jones et al. (1979) 
and Michalke & Fuchs (1975) do not continue to fall a t  low wavenumbers as do these 
presented here. This difference cannot be attributed to our microphone roll-off, and 
might be because of a higher background noise in the other facilities. 

19. Conclusions 
The pressure spectra show reasonable agreement with the theoretical spectra of 

Part 1 a t  wavenumbers that correspond to the k-y and the k 3  ranges. While the 
limited validity of Taylor’s hypothesis in this range of wavenumbers and the velocity 
contamination of the probe clearly have affected the data, the agreement is 
sufficiently good that the spectral models and the proposed scaling laws can be used 
with some confidence. Even the fact that  the data appear slightly above the theory 
is what would be expected from the effect of the fluctuating convection velocity on 
Taylor’s hypothesis and the probe errors. The deviations from the theory a t  low 
wavenumbers are primarily due to the breakdown of the isotropic assumptions on 
which the spectral calculations are based. 

Particularly striking about the data is the agreement among the various in- 
vestigators using different techniques. It is clear that, while the phenomenon being 
measured may not be entirely a pressure fluctuation, it is intrinsic to the device. The 
agreement with the theoretical results over most of the range presented would seem 
to provide a strong indication that pressure fluctuations are indeed the dominant 
influence on the probe. The appearance of a roll-off slower than k-z a t  the higher 
wavenumbers is consistent with the analysis of § 14 and lends credibility to the use of 
the Siddon-Fuchs equation. The fact that  the deviations due to the velocity 
contamination occur a t  wavenumbers above that expected indicates that the 
Siddon-Fuchs estimates of A and B are probably conservative, at least along the 
centreline of the jet mixing layer. 

I n  view of the fact that  few shear flows can be regarded as stronger than the jet 
mixing layer, it  appears unlikely that the k-9 range arising from the turbulence- 
mean-shear interaction will be commonly observed. Moreover, since few flows have 
a turbulence intensity higher than the mixing layer, i t  seems unlikely that more 
definitive measurements of the k-: range will be made, because of the velocity 
contamination of the probe. Nonetheless, the measurements and analysis presented 
in this paper indicate that, things may not be as bad as they seem. Since the probe 
measurement errors are dominant a t  the higher wavenumbers while the pressure 
spectra peak strongly at low wavenumbers, reasonably accurate measurements of 
mean-square pressure fluctuations and low-wavenumber spectra appear to be possible. 
Moreover, if the k-z and k-y  ranges and the constants suggested are accepted as valid, 
then a great deal is known about the high wavenumbers, even in the absence of further 
direct measurements. 

The bulk of this paper was first presented a t  the Acoustical Society of America 
Meeting in State College, Pa. (July 1977), and subsequently a t  the American Physical 
Society/Division of Fluid Dynamics Meetings in Bethlehem, Pa. (November 1977) 
and a t  the AIAA Aeroacoustics Meeting in Hartford, Conn. (June 1980). 

This work was initiated in 1974 while the authors were a t  the Applied Research 
Laboratory of the Pennsylvania State University, and the pressure measurements 
were carried out in the open-jet facility of that  laboratory. The analysis and 
interpretation has been carried out a t  the Turbulence Research Laboratory of the 
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Appendix. The evaluation of (4.6) 
We first define @(k) to be the Fourier transform of (r1-I given by 

It is obvious that this Fourier transform does not exist in the usual sense. However, 
if 1rI-l is considered to be the limit of a sequence of functions whose Fourier transforms 
do exist (for example, 1rl-l exp (-crlrl) as CT +O),  the Fourier transform in the Sense 
of generalized functions can be defined as the limit of these Fourier transforms (see 
Lighthill 1964; Lumley 1970); the result is 

1 
2nC2k2 ‘ 

@(k) = - 

It is straightforward to show that W ( k )  from (4.6) can be rewritten as 

The result of (4.7) follows immediately 
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